Application 1

THABET	

Academy

Symbole	235 92 U	⁹⁴ Sr	neutron	proton
Masse [en unité de masse atomique (u)]	234,9934			

On donne : unité de masse atomique : $1u = 931,5 \text{ MeV. } C^{-2}$.

- 1°) Donner les expressions des énergies de liaison des noyaux 235U et 34 Sr. Les calculer. 2°) Préciser, en le justifiant, lequel de ces deux noyaux est le plus stable.

Application 2

Le thorium $^{227}_{90}$ Th est radioactif α .

1°) Ecrire l'équation de cette réaction de désintégration. On précisera le symbole du noyau formé ZX.

On donne: 80 Rn; 87 Fret 88 Ra.

2°) On suppose que le noyau de thorium 90 Th est immobile dans un référentiel lié au laboratoire et que les noyaux formés sont obtenus à l'état fondamental et que le rapport des énergies cinétiques du noyau fils $^{\Lambda}_{Z}X$ et de la particule α est égal à l'inverse du rapport de leurs masses .

Calculer en MeV la valeur de l'énergie cinétique $E_c(\alpha)$ de la particule α en admettant que l'énergie libérée par la réaction (|W| = 1.21 MeV) est communiquée aux particules α et au noyau fils $^{A}_{Z}X$

sous forme d'énergie cinétique.

On donne: $m(\alpha) = 4,0015 \, u$ et $m(z^A X) = 223,1517 \, u$.

Academy

3°) En réalité, $E_c'(\alpha) = 0.75$ MeV; montrer que l'émission α s'accompagne nécessairement de l'émission d'un photon d'énergie dont on déterminera la longueur d'onde λ .

On donne :: h = 6,62.10-34 J.s; C = 3.108 m.s-1 et 1 MeV = 1,6.10-13 J.

Application 3

THABET

Academy

On considère la réaction nucléaire suivante :

$$_{0}^{1}$$
n + $_{92}^{235}$ U $\longrightarrow_{Z}^{140}$ Xe + $_{38}^{94}$ Sr + k $_{0}^{1}$ n

- 1°) Donner le type de cette réaction et citer son nom en justifiant votre réponse.
- 2°) Déterminer les valeurs de Z et de k en précisant les lois utilisées.
- 3°) a) Exprimer puis calculer la variation de masse Δm qui accompagne cette réaction.
 - b) Préciser, en le justifiant, si cette réaction libère ou consomme de l'énergie.

 Calculer cette énergie en MeV

Données:

Symbole	²³⁵ U	¹⁴⁰ Xe	⁹⁴ Sr	neutron	proton
Masse [en unité de masse atomique (u)]	234,9934	139,8888	93,8064	1,0086	1,0073

Célérité de la lumière : $C = 3.10^8 \text{ m.s}^{-1}$; unité de masse atomique : $1u = 931,5 \text{ MeV}.C^{-2}$

Exercice 1

Academy

- Données numériques : $1u=1,66.10^{-27}kg$; C=3. $10^8 m.s^{-1}$; $1MeV=1,6.10^{-13}J$; $m_p=1,00727u$; $m_n=1,00867u$
- 1°) Le noyau d'uranium 238 U a une masse m₁=238,0508 u, Calculer son énergie de liaison Eℓ₁.
- 2°) Sachant que l'énergie de liaison du noyau d'uranium $^{235}_{92}$ U est E ℓ_2 =1809,5 MeV et l'énergie de liaison par nucléon du noyau de radon $^{222}_{86}$ Rn est E $_3$ =7,2 MeV/nucléon. Comparer la stabilité des trois noyaux.

Exercice 2 On donne:

- * Masse molaire atomique du protactinium : M=234 g.mol⁻¹
 - * Nombre d'Avogadro : *N* =6,02.10²³ ; * Constante de Planck : h=6,62.10⁻³⁴J.s
 - * Célérité de la lumière dans le vide : C=3.108m.s-1; * 1MeV = 1,6.10-13J
- I-/ Le protactinium 234Pa est radioactif, il se transforme en uranium 234U, avec émission d'une particule AX.
- 1°) a-/ Écrire l'équation de la désintégration.
- b-/ Identifier la particule AX. Expliciter les règles appliquées.
- c-/ Expliquer la formation de cette particule.

2°) On considère à la date t=0, un échantillon de protactinium $^{234}_{91}$ Pa, contenant N₀=5.10²⁴ noyaux et on suit au cours du temps l'évolution du nombre N de noyaux restants, on obtient la courbe N= f(t) donnée par la

figure ci-contre.

a-/Justifier théoriquement, l'allure du graphe tracé.
b-/ Définir la période radioactive T d'un radioélément.
c-/ Déduire à partir du graphe la période T du protactinium.
d-/ Établir la relation liant la constante radioactive λ à la

- 3°) Définir l'activité A d'une source radioactive et calculer
- sa valeur dans le système international d'unité, pour 234 Pa à la date t=21h.
- 4°) Déterminer la masse disparue de l'échantillon de protactinium à la date t=28h.
- II-/Le noyau d'uranium²³⁴U est radioactif, émetteur α, il se transforme en thorium Th.
- 1°) Ecrire l'équation de la réaction nucléaire.

période T. Calculer la valeur deλ.

2°) Les énergies de liaison des noyaux de U, Th et α sont respectivement :

$$E\ell_1 = 1778,6 \text{ MeV}$$
 ; $E\ell_2 = 1764,5 \text{ MeV}$; $E\ell_3 = 28,3 \text{ MeV}$

- a-/ Comparer la stabilité des noyaux d'uranium et de thorium. Ce résultat est-il prévisible sans calcul ?
 b-/ Calculer l'énergie libérée au cours de la désintégration d'un noyau d'uranium.
- 3°) Le noyau d'uranium est considéré au repos. Sachant qu'au cours de sa désintégration, il y'a émission d'un photon γ de longueur d'onde dans le vide λ =3,1.10⁻¹²m.

THABET Academy

a-/ Interpréter l'émission du photon γ et calculer son énergie en Joule puis en MeV b-/ Sachant que le rapport de l'énergie cinétique $Ec(\alpha)$ et de l'énergie cinétique Ec(Th) est égal à l'inverse du rapport de leurs masses, calculer la valeur $Ec(\alpha)$ de l'énergie cinétique de la particule α .

Exercice n°4:

On considère les équations des réactions nucléaires suivantes :

Réaction (1):
$${}_{1}^{2}H + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{Z}^{A}X$$

Réaction (2):
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{140}_{54}Xe + {}^{94}_{Z'}Sr + k^{1}_{0}n$$

1°) Calculer:

- Z et A pour la réaction (1)
- Z' et k pour la la réaction (2)
- 2°) Préciser le nom de chaque réaction.
- 3°) Calculer en MeV l'énergie libérée au cours de :
 - la formation d'un noyau ⁴₂He
 - La transformation d'un gramme²³⁵U.

On donne: m (${}_{1}^{2}$ H)=2,0140u; m (${}_{2}^{3}$ He ${}_{2}^{3}$ He)=3,01603u; m (${}_{2}^{4}$ He)=4,0026u; m_p=1,00727u;

 m_n =1,008655u ; E ($^{235}_{92}$ U)=7,5MeV/nucléon ; E ($^{140}_{54}$ Xe)=8,2MeV/nucléon ; E ($^{94}_{Z}$ Sr)= 8,5MeV/nucléon

 $1u.C^2 = 931,5 \text{MeV}$; Nombre d'Avogadro : $\mathcal{N}=6,02.10^{23}$; masse molaire de l'uranium 235 : M=235g.mo ℓ^{-1}